Verilog Tips, Pitfalls to Avoid

By marshallh

Get into the Right Mindset

A. You are writing HDL, not C. Although Verilog may look vaguely similar in its syntax,
that’s where it ends. Experienced software monkeys may take more mental re-adjustment
to write HDL than a newbie with no prior software experience.

B. CPUs execute instructions in sequence. HDL is describing everything and it is all
happening at the same time.

C. Some of the same concepts used for safe multithreading are common to hardware, such
as semaphores, race conditions, mutual exclusion, etc. Not all though.

D. Describe circuits, not programs.

What About Google?

A. Justlike any other language, there is lots of bad code out there.

B. You’ll see lots of course materials, that’s fine, do remember that academic examples may
not be the best or most reliable way of doing things, even though they may be elegant.

C. Fpga4Fun, UCSC, ArchVLSI, Peter’s Intro

Testbenches

A. Approximately 80% of the Verilog language is not even synthesizable; that is, during
compilation it will be either entirely ignored or error out depending on the design suite.
Generally, such commands are labeled: $display, $monitor, etc

B. Although you won’t be shipping anything with these constructs and commands, they will
aid you if you choose to test your code via simulation. A common example would be if
you’re writing a SDRAM controller - if you violate timing as per the datasheet the chip is
not going to tell you explicitly. However, by designing a testbench and instead of
interacting with the physical chip, you plug it into Micron’s behavioral model, it will log
invalid commands, timing violations, and so on.

C. A benefit of simulation is that only the first step of compilation — Analysis & Synthesis —
is required. Because fitting, timing analysis and bitstream generation are skipped, time
saved can be over 50%.

D. Eventually your HDL needs to talk to the outside world, interfacing with other chips.

When you can’t fully model the entire system, add SignalTap to the design and watch

http://www.fpga4fun.com/VerilogTips.html
http://classes.soe.ucsc.edu/cmpe100/Winter03/Resources/verilog.pdf
http://www.engsoc.org/~jvd/docs/hdl/parkin_goodRTL.pdf
http://www.doe.carleton.ca/~jknight/97.478/PetervrlK.pdf

how the system reacts with your coded loaded into the FPGA. I tend to use this more

than simulation.

Writing Synthesizable Code

A.

You are only going to be using less than 10% of the Verilog language.

B. Stick with purely synchronous logic, and only trigger on rising edges.
C.
D

. With Verilog there are options to write C-like code and offload more of the actual

Size and length of the code can be entirely unrelated to amount of device usage.

implementation onto the tools; this is a good way to waste logic resources.

Your Fumax of a particular clock domain usually is brought down first by large amounts of
combinational logic. Pipeline or break up the logic between several cycles.

Do not use tristate primitives or high impedance values (1’ bZ) within modules, only in
the top level. This is a holdover from the ASIC design and although most FPGA tools can
work around it, you may be in for some nasty surprises. Verify this works as intended in
your own application, and put a note for future reference if the design may be reused in a
different environment later.

Identical RTL can be interpreted different ways by different vendor software if there is

any ambiguity. In addition, test results can show different behavior between simulation

and the physical implementation. Sunburst Design paper about this.

Clock Domains

A.

As before, you should be writing largely synchronous logic, clocked off an either internal
or external clock source (such as an internal PLL output, dedicated clock input, etc).
Some combinational logic is fine too.

Never clock logic using other logic. The classical example of using a counter’s MSB as a
clock divider comes to mind. This will explode in your face if you try to apply it to
anything more complex.

Any input that isn’t edge-synchronous with your current module’s clock should be
treated as completely asynchronous. Whether it’s an external output enable or data bus,
you must synchronize the signal(s) with respect to the current clock or risk catching it
between logic levels. This is explained down below.

Avoid having more than one clock per module. This is more a stylistic approach but it

helps partition your code and avoid mixing registers up between clocks.

http://www.sunburst-design.com/papers/CummingsSNUG1999SJ_SynthMismatch.pdf

Avoiding Metastability
A. Any asynchronous signals or those coming from another clock domain must be

synchronized with your local clocked logic.

BAD A BETTER APPROACH
input clk 50; input clk 50;
input ext enable; input ext_enable;

reg ext enable 1, ext enable 2;
always @ (posedge clk 50) begin
if (ext enable) .. always @ (posedge clk 50) begin

end B ext enable 1 <= ext enable;
ext enable 2 <= ext enable 1;

if (ext _enable 2)
end

There is no “one right way” to do this. The industry rule of thumb is to run each signal
through 2 flip-flops to allow the signal time to settle and prevent glitching. For
applications where even higher reliability is required, 3 flip-flops increases the MTBF
exponentially.

B. Another cause of internal glitching is the classic asynchronous reset. This is another thing
I've had to learn the hard way. Just because something may work with a blinking LED or

in simulation does not guarantee it will work down the road in a more complex

application.
BAD A BETTER APPROACH
input clk 50; input clk 50;
input rst n; input rst n; // must be synch
always @ (posedge clk 50 or negedge always @ (posedge clk 50) begin
rst n) begin if (~rst n)

else begin

if (~rst n)
end end
end

Again, in a design with multiple clock domains, you will need to synchronize the reset
signal locally to that particular domain. More information in this comprehensive

Sunburst Design paper.

http://www.sunburst-design.com/papers/CummingsSNUG2002SJ_Resets.pdf

C.

D.

You can adapt the synchronizers to use them as edge detection - 1 £ (~sig_latch 2
& sig latch_3) triggers on the falling edge of sig_latch, but thereisa 2 cycle
delay. This of course assumes you have explicitly added your own synchronizers.

For passing data between clock domains, a true dual-ported block RAM can be very

convenient, along with a couple semaphores, or handshaking synchronizer.

Timing Analysis

A.

Modern design tools by default use preliminary timing information to determine how to
synthesize and fit your design. In Quartus II, this is called “Timing-driven synthesis”.
From version 10 onwards, timing-driven synthesis is enabled by default, and you must at
minimum constrain your external clock oscillator.

Quartus has a tool called “TimeQuest” that analyzes the final compiled design to see that
all logic meets timing.

At some point your code will be of sufficient complexity that even having specified no
constraints, you'll see “Timing requirements not met” as a critical warning. It’s time to
tell Quartus about the external clocks you’re using and any specific constraints you want
it to use when synthesizing your logic.

SDC files (short for Synopsys Design Constraints) are used to describe clocking and any
I/0 that needs explicit setup/hold timing. These files are written in the Tcl language.
Adding proper timing constraints is a process in itself, here’s a stripped down file that has

the minimum:

}

create clock -name clk 50 -period 20.0 [get ports clk 50]
derive pll clocks

derive clock uncertainty

set clock groups -asynchronous \

-group { clk 50 } \

-group { clk usb } \

-group { \

}oA
-group { \

mibplaltpll component|auto generated|plll|clk[0] \

mpO|altpll component|auto generated|plll|clk[0] \

First, the external 50mhz clock with a 20ns period is created, and it is used for deriving

the PLL clocks that may be based off this source clock.

http://retroactive.be/HandshakeSynchronizer.v

Then, explicit clock groups are declared and false paths are cut between the domains. The
long verbose names describe a particular PLL output.

For high speed I/O like an external DDR data bus where specific setup and hold times
must be observed, these should be detailed in your constraints file as well. Pay attention
to the synthesizer warnings - if there are any errors or missing/extraneous nodes in the

SDC, the entire constraint may be ignored.

Compiler Directives

A. Besides plain includes (“include ‘header.v’)it’s bestto leave these alone.

B. Depending on your Analysis/Synthesis settings (Quartus default is ‘Safe State Machine’)
your FSM registers (reg [4:0] state fora 32-state FSM) may be converted to Gray
coding or one-hot

C. These directives are a holdover from Synopsys tools which were/are industry standard.
Synplify is the backend behind several vendors’ tools, and also used standalone.

D. /* synthesis preserve */isapplicable to a register which prevents state
machine inferring; the FSM still works as intended but you will be able to tap the register
with SignalTap. Logic usage will decrease once you remove the directive and allow full
optimization.

E. /* synthesis noprune */ prevents Quartusfrom optimizing away zero-fanout
registers that aren’t directly connected to outputs or combinational logic.

F. /* synthesis keep */ prevents combinational nets from being optimized out.
The result is less efficient logic utilization.

G. Example: reg [7:0] state /* synthesis preserve */ ;

H. Once a module is debugged you should remove these directives.

I. Additional instructions to the synthesis engine are possible via vendor-specitfic
configuration. In Quartus, you can set behavior of the synthesizer with respect to all
manner of things such as register duplication, area optimization and so on via the
Assignments > Settings > More Settings dialog box.

General

A. Do not mix blocking and nonblocking assignments (=, <=) within the same always block.
I use nonblocking only.

B. Continuous assignments: Expression on the left of the assignment (=) must always be a

net or structural element.

C. Caveat: Inside clockless always blocks such as always @ (*), all assignments (<=) are
continuous, and those “registers” you are assigning turn into wires. This is confusing as
the same code but inside a clocked block becomes synchronous with proper registers.

D. Procedural assignments: Expression on the left of the assignment (<=, =) must always be
a register. These are placed inside always blocks.

E. Assignment precedence: You can have multiple assignments to the same register within
one always block. The last occurring assignment in the same clocked always block
will take precedence over the others. You can use/abuse this for cleaner code, exercise
caution.

F. Don’t have two always blocks assigning values to the same register. If you're lucky
your tool will catch it, but in any case you should re-think your design. Designs may have
a giant always block, or contain many blocks with separate, non-overlapping
functionality. Either one is correct.

G. Case statements inside clockless (asynchronous) always blocks must have a default
case. Put another way, every signal must have an assignment in all possible control flows,
or latches are inferred.

H. Mixing logical and bitwise operators: Don’t. Within the same 1 £ () condition, stick with
one or the other.

I. When you have an arithmetic operation (addition, subtraction, multiplication, etc) done

to two registers or structural nets, each must have been explicitly declared ‘signed’ or by

default the operation will be unsigned. This extends to explicitly instantiated DSP or
multiplier blocks. Each operand may be casted $signed () for the operation if it wasn’t
explicitly defined as such.

Numbers without a specified bit width (e.g. 12’ h6F) will be implicitly treated as 32 bits.

Bit sequence repetition: {2{16’ hBEEF} } ; yields 32’ hBEEFBEEF;

You can put spacers in number definitions for clarity - 8’ b100_10001;

=0 AT

. If you want sign extension to work in your arithmetic when using constants, always

specify the full number of bits in the constant.

This guide isn’t at all intended to be comprehensive or the best out there, it’s simply what’s

worked for me and if you have suggestions or would like to point something out, email me:

mail@retroactive.be

